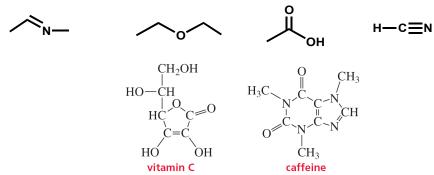
QUI02014 - Química Orgânica Teórica 1B Prof. Gustavo Pozza Silveira


Lista de Exercícios 01

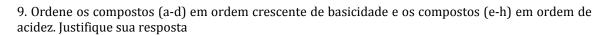
1. Desenhe as estruturas para cada um dos seguintes compostos usando estruturas em cavalete

- 2. Determinar a carga formal para o Oxigênio na água e H_3O^+ ; bem como para o carbono no ânion metila e metano.
- 3. Desenhe as estruturas dos compostos abaixo de modo a mostrar as ligações covalentes e os pares de elétrons não ligantes:

a. $CH_3NHCH_2CH_3$ b. $(CH_3)_2CHCHO$ c. CH_3CONH_2 d. CH_3COCl e. $(CH_3)_2CHCl$ f. CH_3SH g. CH_3CCCH_3 CH_3Br

4. Mostre as hibridizações para os átomos de Carbono, Oxigênio e Nitrogênio para as seguintes moléculas:

- 5. Qual o ácido mais forte, o que tem p $\kappa a = 5.2$ ou o que tem p $\kappa a = 6.0$? Qual o ácido mais forte, o que tem constante de dissociação de 3 x 10^{-3} ou 1.8×10^{-4} ? Justifique.
- 6. Escreva as estruturas das bases conjugadas para os seguintes ácidos.


a.
$$OH$$
 OH OH $C.$ OH

7. Escreva as estruturas dos ácidos conjugados para as seguintes bases.

a.
$$H_3C$$
 b. $COO^{\stackrel{\bigodot}{O}}$ C.

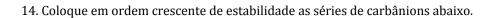
8- Explicar o aumento da acidez nos derivados do metanol (do metanol sem substituintes ao trisubstituído com 3 grupos trifluormetila).

$$H_3C-OH$$
 F_3C OH F_3C OH F_3C OH F_3C OH F_3C OH $Pk_a=15.5$ $pk_a=12.4$ $pk_a=9.3$ $pk_a=5.4$

a. NH_3 b. $MeNH_2$ c. Me_2NH d. $ClCH_2CH_2NH_2$ e. CH_3CH_3COOH f. $ClCH_2COOH$ g. $Cl_2CHCOOH$ h. Cl_3CCH_2OH

10. Desenhe as estruturas de ressonância possíveis para as espécies abaixo:

a.
$$OCH_3$$
 b. H_3C OCH_3 c. CH_3 d. OCH_3 f. OCH_3


11. Qual das estruturas mostradas tem a maior contribuição para o híbrido de ressonância?

12. Coloque os carbocátions em ordem crescente de estabilidade. Justifique.

a.
$$\begin{array}{c} \text{CH}_3 \\ \text{b.} \end{array}$$

13. Coloque os carbocátions das séries abaixo em ordem crescente de estabilidade.

a. $(CH_3)_3C^+$ b. $(CH_3)_2C^+$ c. $CH_3CH_2^+$ d. CH_3^+ e. $CH_2CHCH_2^+$ f. $C_6H_5CH_2^+$ g. $(CH_3)_2C^+N(CH_3)_2$ h. $(CH_3)_2C^+OH_3$

a. H₂CCH⁻ d. (C₆H₅)₂CH⁻ b. HCC⁻ e. H₃C⁻

c. H₃CCH₂f. (C₆H₅)CH₂-

g.

h. H₂CNO₂