QUIMICA ORGÂNICA AVANÇADA A

Prof. Gustavo Pozza Silveira

gustavo.silveira@iq.ufrgs.br

Sala 201A (bloco E - 43122)

3^a Parte - Ementa

- Processos de enolização.
- Modelo de Ireland.
- Modelos de adição ao grupo carbonila.
- Estados de transição Zimmerman-Traxler em compostos carbonílicos.
- Modelos de adição ao grupo carbonila (auxiliares quirais)

Auxiliares Quirais

This is what we mean by a chiral auxiliary strategy

- 1. An enantiomerically pure compound (usually derived from a simple natural product like an amino acid), called a chiral auxiliary, is attached to the starting material.
- 2. A diastereoselective reaction is carried out, which, because of the enantiomeric purity of the chiral auxiliary, gives only one enantiomer of the product.
- 3. The chiral auxiliary is removed by, for example, hydrolysis, leaving the product of the reaction as a single enantiomer. The best chiral auxiliaries (of which the example above is one) can be recycled, so although stoichiometric quantities are needed, there is no waste.

Auxiliares Quirais

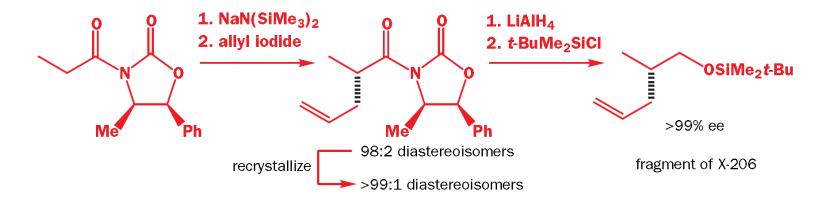
(Oxazolidinonas de Evans)

Alquilação de enolatos

(Oxazolidinonas de Evans)

Electrophile	Ratio of diastereoisomers
PhCH ₂ I	>99:1
allyl bromide	98:2
Etl	94:6

Alquilação de enolatos

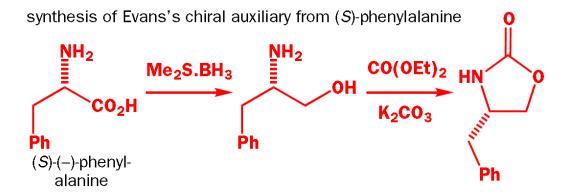

(Oxazolidinonas de Evans)

98:2 mixture of diastereoisomers

98:2 mixture of enantiomers 96% enantiomeric excess

Recristalização

(Aumento da pureza ótica)

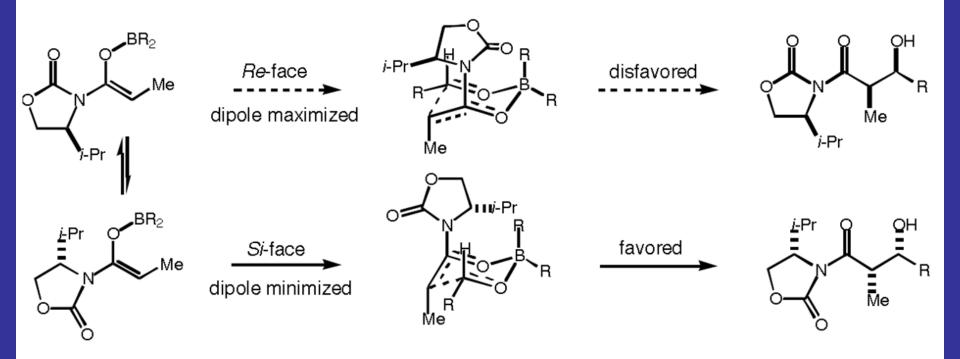


Method	Advantages	Disadvantages
chiral auxiliary	often excellent ees; can	extra steps to introduce
	recrystallize to purify to	and remove auxiliary
	high ee	

E ainda, precisam ser utilizados em quantidades estequiométricas na reação.

Exercício:

An alternative to the Evans chiral auxiliary described in the chapter is this oxazolidinone, made from natural (S)-(-)-phenylalanine. What strategy is used for this synthesis and why are the conditions and mechanism of the reactions important?



Essa reação apresentará controle pelo efeito de quelação?

Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127

- ♦ Reação altamente diastereosseletiva (141:1 a >500:1).
- ◆ Grande quantidade de aldeídos (R = alquil, aril...)
- ◆ Uma das reações mais previsíveis sinteticamente aplicação industrial

Modelos possíveis para indução assimétrica:

1st: aldehyde in front, enolate on the back

2nd: enolate in front, aldehyde on the back

Produto Evans

O primeiro intermediário será favorecido devido ao menor impedimento estérico e pela oposição dos vetores das carbonilas.

Evans – Aldol - Heathcock

(ácido de Lewis - LA)

No modelo de Heathcock, a quelação com o aldeído é dificultada pela presença do LA. Desta forma, o ET ZT permanece entre o enolato e a oxazolidinona. A face do aldeído a ser ataca depende do tamanho do LA e não dos grupos R no auxiliar e R' no aldeído.

Tamanho do LA afeta a diastereoseletividade.

Evans – Aldol - Crimmins

Titânio favore a complexação com a carbonila da oxazolidinona invertendo a face do enolato que ataca o aldeído. Utilização da tiozolidinona favore ainda mais a complexação com o Ti levando ao produto non-Evans.

Ti possui maior afinidade por S que O

$$\bigcup_{s}^{\mathsf{TiL}_n} \longrightarrow \bigcup_{o}^{\mathsf{TiL}_n}$$

Fowles, et al. J. Chem. Soc. 1971, 1920.

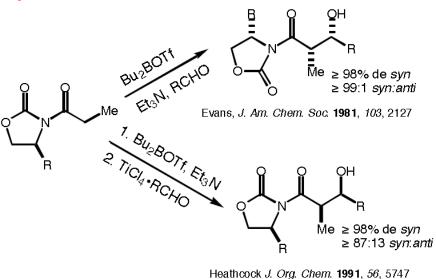
Quando X=S a complexação com Ti é favorecida.

Efeito de bases e Ti:

$$X, Y = O; R_c = Bn$$

T (°C)	<u>R</u>	yield	A : B : anti
0	 Et	84	99:1:0
0	MeCH=CH	89	97:3:0
0	<i>i</i> -Pr	89	98:2:0
0	<i>t</i> -Bu	87	97 : 3 : 0
<i>–</i> 78	<i>i</i> -Pr	98	98:2:0

$$X, Y = S; R_c = i$$
-Bu (X = S, Y = O, $R_c = Bn$ gave similar)

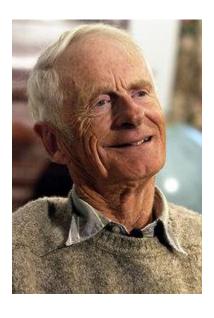

DIEA OF ID	
DIEA 2.5 <i>i</i> -Pr 86 86 : 14 : •	
DIEA 1.1 <i>i</i> -Pr 75 5 : 95 : n	.a.
TMEDA 2.5 <i>i</i> -Pr 57 96:4:n	.a.
TMEDA 1.1 <i>i</i> -Pr 50 <1:>99:	n.a.
Sparteine 2.5 <i>i-</i> Pr 84 95 : 5 :	0
Sparteine 1.1 <i>i-</i> Pr 63 5 : 95 : n	.a.

O excesso de base (2,5 equiv.) dificulta a formação do complexo de titânio formados com oxa- ou tiozolidinona ou tiozoliditiona.

J. Org. Chem. 2001, 66, 894.

Evans – Resumo

Syn Aldols:

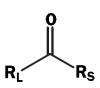

Мe ≥ 90% de syn ≥ 99:1 syn:anti Ticla RCHO 1.1 eq Sparteine i-Bu ri-Bu≥90% de syn ≥ 99:1 syn:anti

Crimmins J. Org. Chem. 2001, 66, 894.

Anti Aldols:

Heathcock J. Org. Chem. 1991, 56, 5747

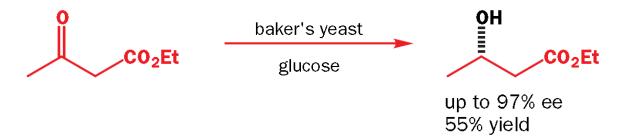
Catálise Assimétrica



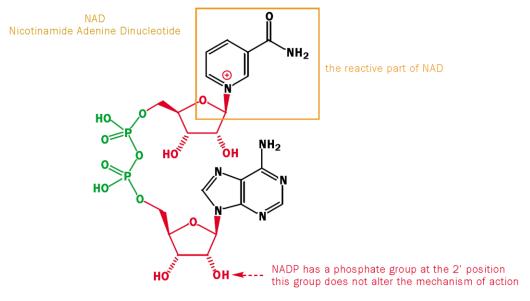
William Knowles
Prêmio Nobel 2001

"Since achieving 95% [enantiomeric excess] only involves energy differences of about 2 kcal [per mol], which is no more than the barrier encountered in a simple rotation of ethane, it is unlikely that before the fact one can predict what kind of ligand structures will be effective"

Knowles, W. S. <u>Asymmetric hydrogenation</u>. *Acc. Chem. Res.* **1983**, *16*,106–112.


CBS reagent (Corey-Bakshi-Shibita)

CBS reagent (Corey-Bakshi-Shibita)


larger smaller substituent

(Enzimas)

Citronela foi obtida com ee superiores ao produto isolado por fonte natural.

(Bioquímica)

NADH—Nature's reducing agent

NAD+—Nature's oxidizing agent

(Bioquímica)

Redução do ácido pirúvico (uma cetona) a ácido láctico (importantes metabólitos) pela enzima álcool dehidrogenase

NAD⁺—Nature's oxidizing agent

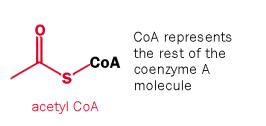
Esta reação poderia ser realizada em laboratório utilizando-se NaBH₄ como agente redutor. Porém, ácido láctico racêmico seria obtido.

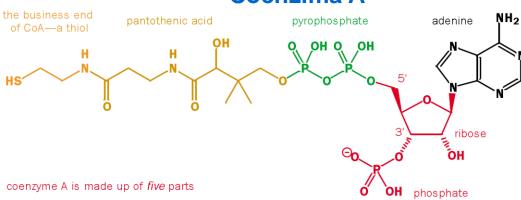
(Bioquímica)

Hidreto é transferido apenas por uma das faces diastereotópicas do NAD+ ou NADP

Reação Modelo

Transesterificação leva ao álcool-éster opticamente ativo.


O ET envolve quelação com Mg²⁺ e pode ser utilizado como para explicar a redução com NAD+.


(Vitamina C)

Como visto anteriormente, vitamina C pode formar um enolato estável que é utilizado como redutor (muitas vezes chamado de antioxidante) em inúmeros processos bioquímicos.

X = Fe(III), peróxidos reativos...

Coenzima A

Conjugação menos efetiva nos tioésteres permite maior formação do enol do que em ésteres.

Menor conjugação também torna a carbonila do tioéster mais reativa aumentando a velocidade da reação (adição - etapa limitante). Finalmente, tiolato é melhor grupo de saída do que alcolato.

(Coenzima A)

(Coenzima A)

Mecanismo

Method	Advantages	Disadvantages	Examples
chiral reagent	often excellent ees; can	only a few reagents are	enzymes, CBS
	recrystallize to purify to	successful and often for	reducing agent
	high ee	few substrates	

Enxofre

(Sulfxóxidos)

reduction in the absence of ZnCl₂

reduction in the presence of ZnCl₂

Enxofre

(Sulfxóxidos Quirais – Lactamização de Marino)

$$R_{2} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{2} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{1} = CH_{3}, iPr$$

$$R_{2} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{1} = CH_{3}, iPr$$

$$R_{2} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{1} = CH_{3}, iPr$$

$$R_{2} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{1} = CH_{3}, iPr$$

$$R_{2} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{1} = CH_{3}, iPr$$

$$R_{2} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{1} = CH_{3}, iPr$$

$$R_{2} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{1} = CH_{3}, iPr$$

$$R_{2} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{1} = CH_{3}, iPr$$

$$R_{2} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{1} = CH_{3}, iPr$$

$$R_{2} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{1} = CH_{3}, iPr$$

$$R_{2} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{1} = CH_{3}, iPr$$

$$R_{2} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{1} = CH_{3}, iPr$$

$$R_{2} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{4} = CH_{4}, iPr$$

$$R_{5} = CH_{5}, iPr$$

$$R_{5} = CH_{5}, iPr$$

Síntese Enantiosseletiva da (-)-Fisostigmina - Marino

Enxofre

(Lactamização)

$$R_{2} = C = 0$$

$$R_{1} = C = 0$$

$$R_{3} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{2} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{2} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{1} = CH_{3}, iPr$$

$$R_{2} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{1} = CH_{3}, iPr$$

$$R_{2} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{1} = CH_{3}, iPr$$

$$R_{2} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{1} = CH_{3}, iPr$$

$$R_{2} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{1} = CH_{3}, iPr$$

$$R_{2} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{1} = CH_{3}, iPr$$

$$R_{2} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{1} = CH_{3}, iPr$$

$$R_{2} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{3} = CH_{3}, iPr$$

$$R_{4} = CH_{4}, iPr$$

$$R_{3} = CH_{4}, iPr$$

$$R_{4} = CH$$

Silveira, G. P.; Marino, J. P. *J. Org. Chem.* 2013, 78, 3379.

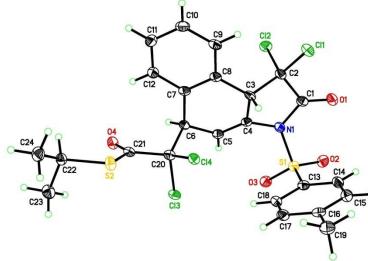
Primeiras lactamas obtidas com alta *re* por γ-lactamização

Silveira, G. P.; Marino, J. P. *JOC* **2013**, 3379

Primeiras lactamas obtidas com alta *re* por γ-lactamização

$$\begin{array}{c}
\overline{NTS} \\
\overline{S}^* \\
\overline{S}$$

Silveira, G. P.; Marino, J. P. *JOC* **2013**, 3379


Primeiras lactamas obtidas com alta

re

The image part with relationship ID rId6 was not found in the file.

Silveira, G. P.; Marino, J. P. JOC 2013, 3379

Primeiras lactamas obtidas com alta *re*

Silveira, G. P.; Marino, J. P. *JOC* **2013**, 3379