

PROPRIEDADES FÍSICAS

Prof. Gustavo Pozza Silveira gustavo.silveira@iq.ufrgs.br

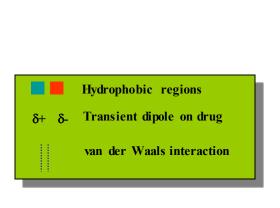
http://www.iq.ufrgs.br/biolab/

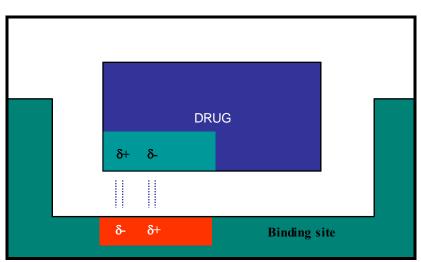
FORÇAS INTERMOLECULARES

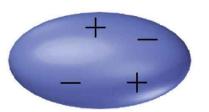
- Ligações químicas: mantém a unidade de uma molécula
- Interações intermoleculares: mantém as interações entre moléculas. Extremamente importante no estado sólido e líquido (maior contato entre as moléculas).
- Responsável pelas propriedades físicas como ponto de ebulição, fusão e solubilidade.

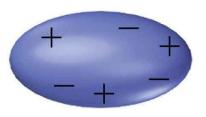
FORÇAS INTERMOLECULARES

- Tipos de interações intermoleculares:
 - Interações de Van der Waals (fracas)
 - Dipolo-dipolo (médias)
 - Ligações de Hidrogênio (fortes)

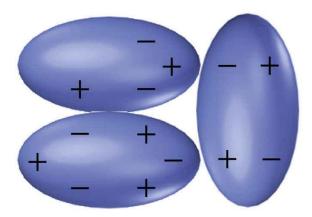

FORÇAS INTERMOLECULARES: VAN DER WAALS e LONDON


- Van der Waals (London; Keesom; Debye)
- Ocorre entre moléculas apolares;
- Tipo de interação mais fraca entre as intermoleculares;


Forças de ligação intermoleculares


Ligações de Van der Walls (sistemas biológicos)

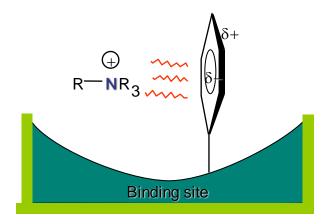
- Interações muito fracas (2-4 kJ mol⁻¹).
- Ex.: ocorrem entre regiões hidrofóbicas do fármaco e do alvo.
- Áreas transientes de alta e baixa densidades eletrônicas levam a formação de dipolos temporários.
- Interações diminuem drasticamente com a distância.
- Fármaco necessita estar próxima ao sítio ligante para interação ocorrer.
- A contribuição total das interações de van der Waals são cruciais para ligação.



random temporary dipoles when separated

correlated temporary dipoles when in contact

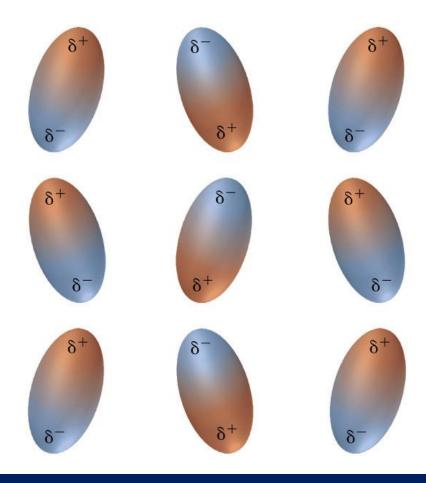
FORÇAS INTERMOLECULARES: VAN DER WAALS e LONDON - DIPOLOS


- Dipolo induzido.
 - Elétrons movem-se em resposta a uma ação externa.
- Atração ocorre devido a formação destes dipolos

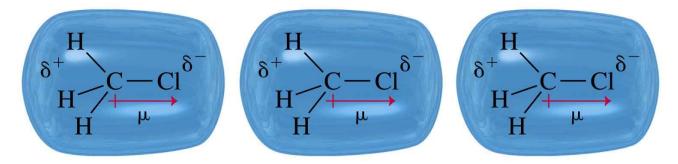
Forças de ligação intermoleculares

(Em sistemas biológicos)

Interações dipolo induzido

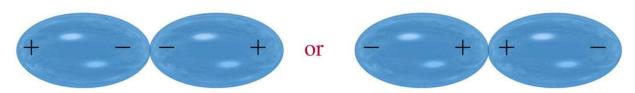

• Ocorre onde a carga de uma molécula induz um dipolo em outra. Ex.: sal de amônio quaternário e um anel aromático.

FORÇAS INTERMOLECULARES: DIPOLO-DIPOLO

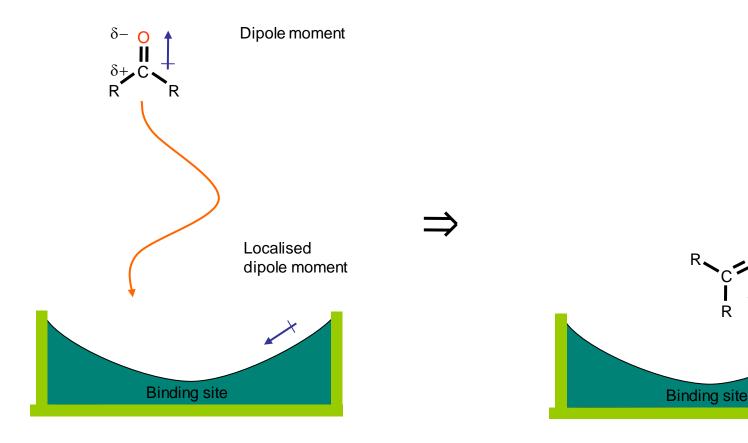

- Dipolo-dipolo
- Ocorre entre moléculas polares (momento de dipolo molecular);
- Tipo de interação intermediária entre as intermoleculares (+ forte que as forças de Van der Waals);
- Energia atrativa devido a interação entre momentos de dipolos moleculares permanentes.

FORÇAS INTERMOLECULARES: DIPOLO-DIPOLO

FORÇAS INTERMOLECULARES: DIPOLO-DIPOLO


attraction (common)

symbolized by


repulsion (uncommon)

Forças de ligação intermoleculares

(Em sistemas biológicos)

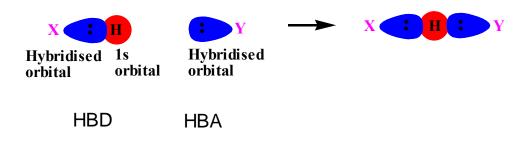
Dipole-dipole

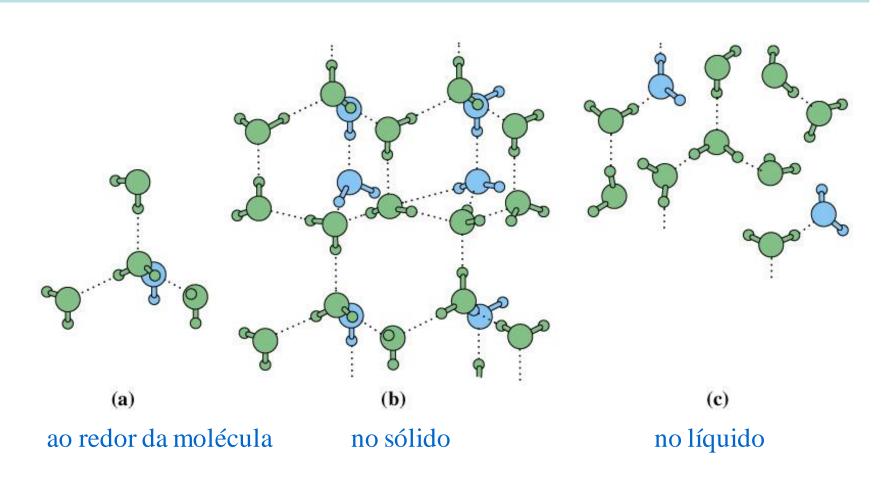
FORÇAS INTERMOLECULARES: LIGAÇÕES DE HIDROGÊNIO

- Ligações de Hidrogênio
- Ocorre entre moléculas polares (momento de dipolo molecular) e que apresentem átomo de H conectado a N, O.
- Tipo de interação mais efetiva entre as intermoleculares.
- Energia atrativa devido a interação entre átomos de H e átomos de N, O.

Forças de ligação intermoleculares

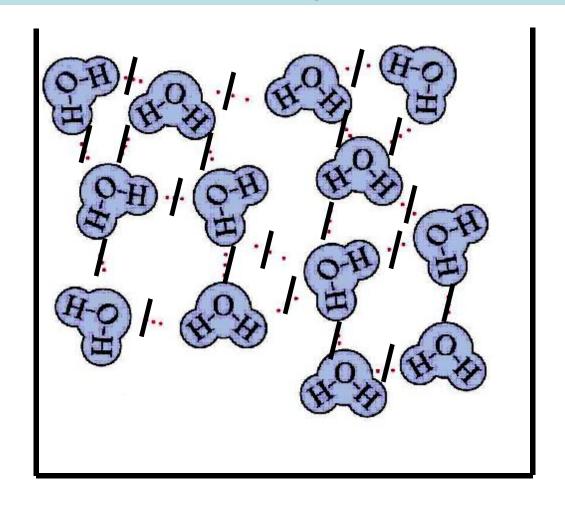
Ligações de hidrogênio (sistemas biológicos)


- Variam em força.
- Mais fracas que interações eletrostáticas, mas mais fortes que interações de van der Waals.
- Uma ligação de hidrogênio ocorre entre um hidrogênio deficiente em elétrons e um heteroátomo rico em elétrons (N ou O).
- O hidrogênio deficiente em elétrons está geralmente ligado a um heteroátomo (O ou N).
- O hidrogênio deficiente em elétrons é chamado de doador de ligação de hidrogênio (HBD hydrogen bond donor)
- O heteroátomo rico em elétrons é chamado de aceptor de ligação de hidrogênio (HBA hydrogen bond acceptor).


Forças de ligação intermoleculares

Ligações de hidrogênio (sistemas biológicos)

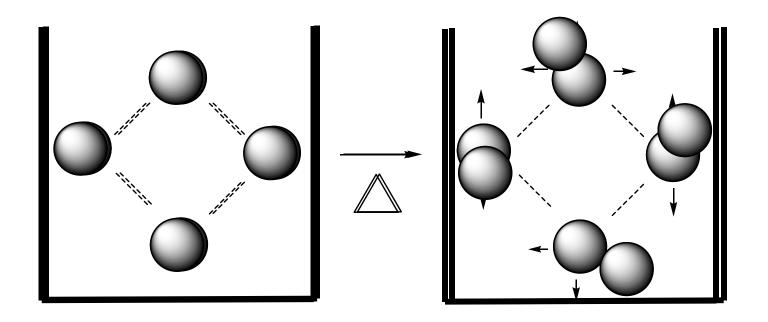
- A interação envolve orbitais e depende da direção (ângulo de ligação).
- Interação de maior efetividade ocorre quando a ligação X-H aponta diretamente para o par de elétrons não ligantes de Y onde o ângulo entre X, H e Y é 180°.


FORÇAS INTERMOLECULARES: LIGAÇÕES DE HIDROGÊNIO -ÁGUA

PROPRIEDADES FÍSICAS: PONTO DE FUSÃO

- PONTO DE FUSÃO
 - TEMPERATURA ONDE UM COMPOSTO PASSA DO ESTADO SÓLIDO PARA O LÍQUIDO
 - NECESSÁRIO CLIVAR AS INTERAÇÕES INTERMOLECULARES.

- PONTO DE EBULIÇÃO
 - TEMPERATURA ONDE UM COMPOSTO PASSA DO ESTADO LÍQUIDO PARA O VAPOR.
 - NECESSÁRIO CLIVAR AS INTERAÇÕES INTERMOLECULARES.

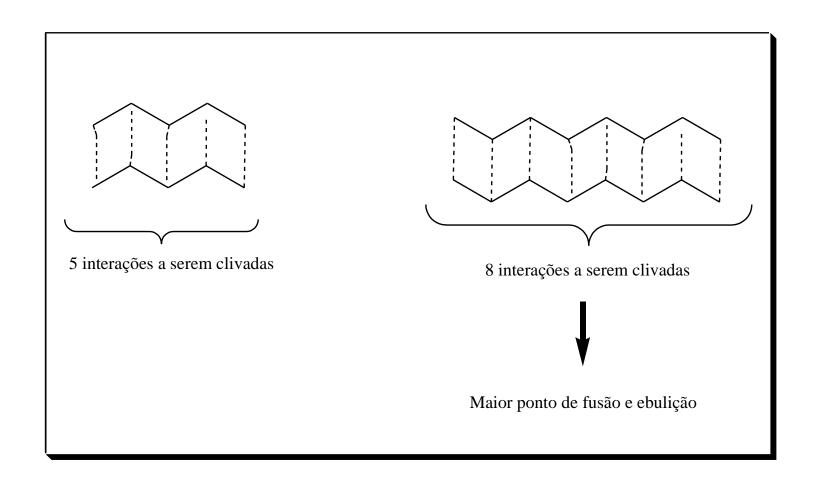

- FATORES QUE AFETAM O PONTO DE FUSÃO e EBULIÇÃO
 - TIPO DE INTERAÇÃO INTERMOLECULAR
 - PESO MOLECULAR
 - TIPO DE CADEIA CARBÔNICA

-TIPO DE INTERAÇÃO INTERMOLECULAR

QUANTO MAIS FORTE A INTERAÇÃO INTERMOLECULAR EXISTENTE, MAIOR SERÁ A ENERGIA NECESSÁRIA PARA ROMPER ESTAS INTERAÇÕES.

TIPO DE ENERGIA EMPREGADA: ENERGIA TÉRMICA

AUMENTO DA EN. CINÉTICA

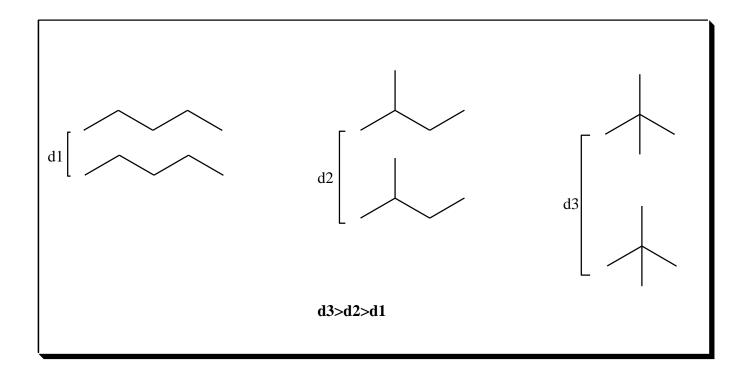

ROMPIMENTO DAS INTERAÇÕES

-PESO MOLECULAR

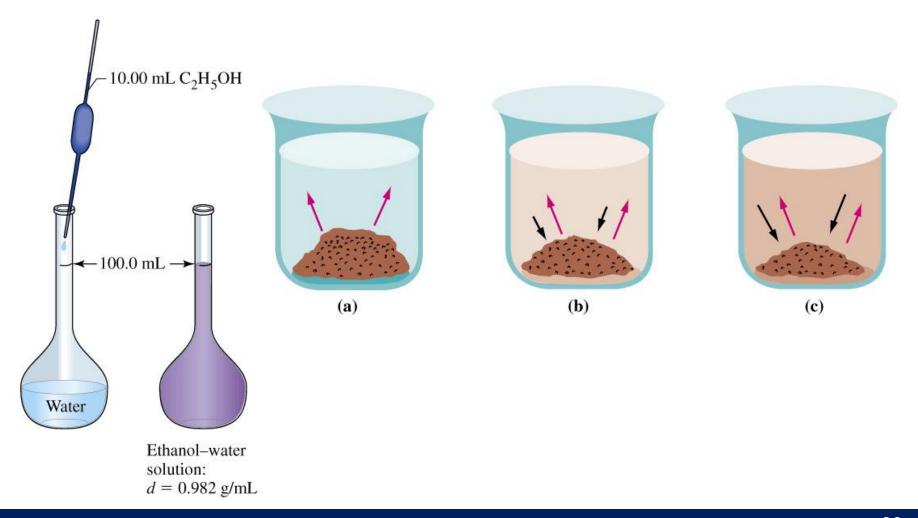
QUANTO MAIOR FOR O NÚMERO DE ÁTOMOS QUE UMA MOLÉCULA APRESENTAR DENTRO DE UM MESMO GRUPO FUNCIONAL, MAIOR SERÁ O NÚMERO DE INTERAÇÕES EXISTENTES ENTRE ESTES ÁTOMOS E MAIOR SERÁ A ENERGIA NECESSÁRIA PARA ROMPER ESTAS INTERAÇÕES.

PROPRIEDADES FÍSICAS

Hidrocarbonetos

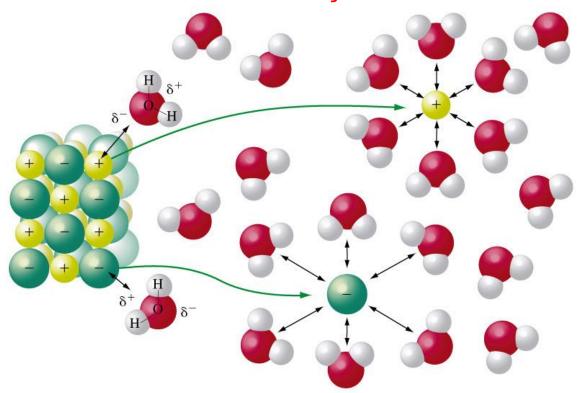

-TIPO DE CADEIA CARBÔNICA

QUANTO MAIOR A PROXIMIDADE DAS CADEIAS E DOS ÁTOMOS, MAIOR SERÃO AS INTERAÇÕES INTERMOLECULARES. CADEIAS LINEARES TEM MAIOR PROXIMIDADE QUE RAMIFICADAS. ISÔMEROS DE CADEIA LINEAR TEM MAIOR VALOR DE PONTO DE FUSÃO/EBULIÇÃO QUE OS RAMIFICADOS.


$$CH_3$$
— CH_2 — CH_2 — CH_2 — CH_3
 n -pentane, b.p. = $36^{\circ}C$

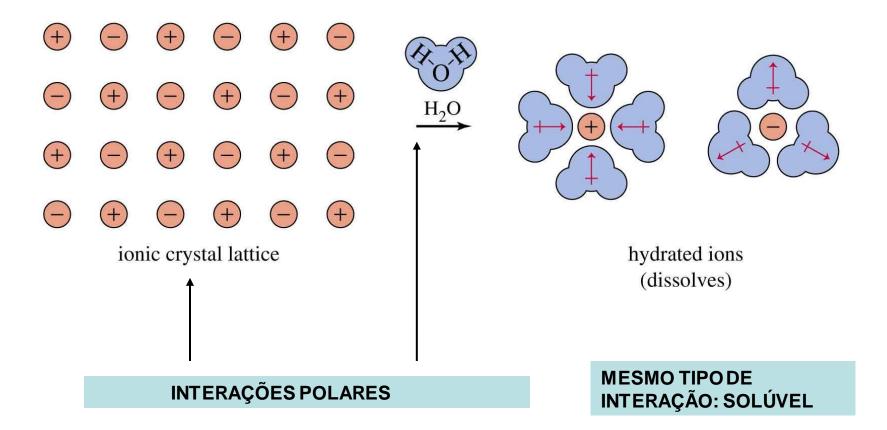
$$CH_3$$
 CH_3 — CH — CH_2 — CH_3
isopentane, b.p. = $28^{\circ}C$

neopentane, b.p. = 10° C



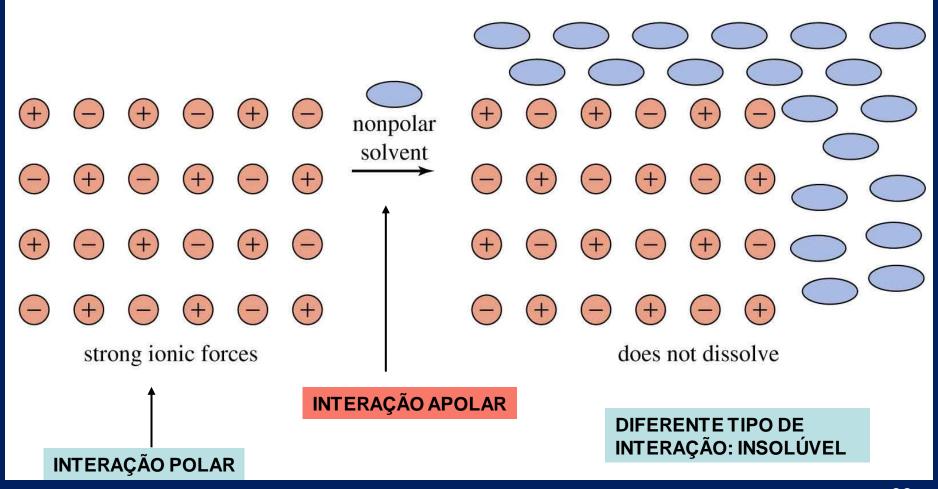
- SOLUBILIDADE e MISCIBILIDADE
 - TENDÊNCIA QUE UM DETERMINADO COMPOSTO (SÓLIDO OU LÍQUIDO) TEM DE SE TORNAR SOLÚVEL OU MISCÍVEL EM OUTRO LÍQUIDO.
 - NECESSÁRIO CLIVAR AS INTERAÇÕES INTERMOLECULARES.
 - ENERGIA EMPREGADA PARA ROMPER ESTAS INTERAÇÕES: ENERGIA DE SOLVATAÇÃO.

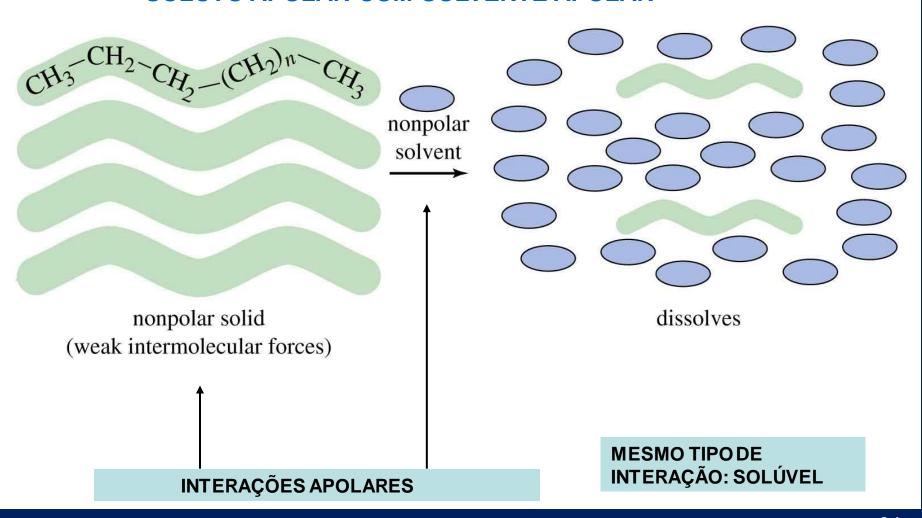
- SOLVATAR:


- SOLVENTE IRÁ "CERCAR OU RODEAR" AS MOLÉCULAS OU ÍONS QUE FORMAM O SÓLIDO OU O LÍQUIDO, AFASTANDO-AS E CLIVANDO ASSIM AS INTERAÇÕES INTERMOLECULARES.

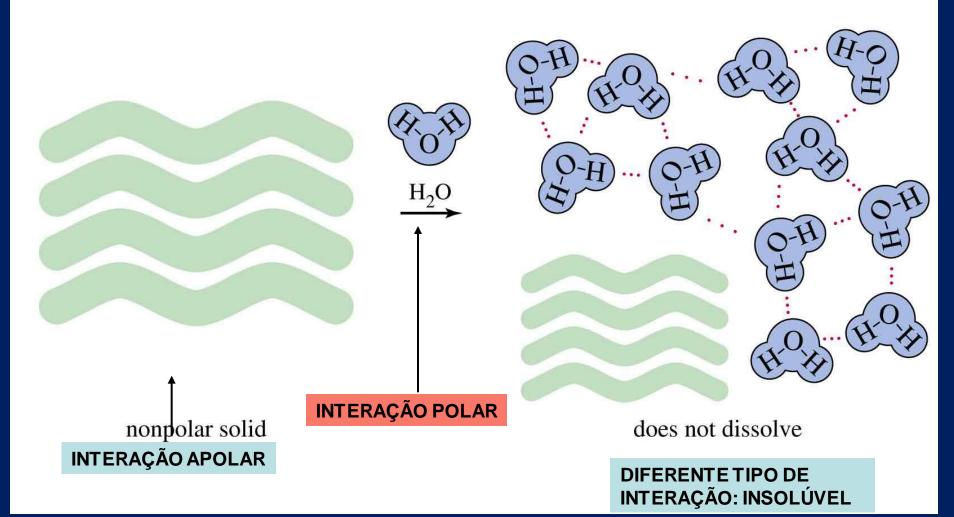
-CASOS DE SOLVATAÇÃO

- -SOLUTO POLAR COM SOLVENTE POLAR
- -SOLUTO POLAR COM SOLVENTE APOLAR
- -SOLUTO APOLAR COM SOLVENTE APOLAR
- -SOLUTO APOLAR COM SOLVENTE POLAR


-SOLUTO POLAR COM SOLVENTE POLAR


Prof. Gustavo Pozza Silveira

PROPRIEDADES FÍSICAS: SOLUBILIDADE e MISCIBILIDADE


-SOLUTO POLAR COM SOLVENTE APOLAR

-SOLUTO APOLAR COM SOLVENTE APOLAR

-SOLUTO APOLAR COM SOLVENTE POLAR

PROPRIEDADES FÍSICAS DOS COMPOSTOS ORGÂNICOS: HIDROCARBONETOS - ALCANOS

PONTOS DE FUSÃO E EBULIÇÃO

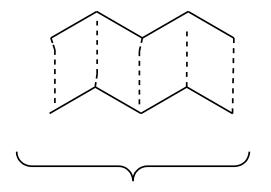
- Diferentes grupos funcionais

$$\mu = 1.30 \text{ D}$$
 H_3C
 CH_3

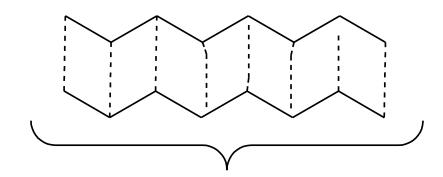
dimethyl ether, MW 46

 DH_3C
 DH_3C

H H
$$\mu = 0.08 \text{ D}$$
H₃C CH₃
propane, MW 44
bp -42°C


APRESENTA O MENOR VALOR DE PONTO DE FUSÃO E EBULIÇÃO ENTRE MOLÉCULAS DE PESOS MOLECULARES APROXIMADOS, POIS CONTÉM AS INTERAÇÕES INTERMOLECULARES MAIS FRACAS.

PROPRIEDADES FÍSICAS DOS COMPOSTOS ORGÂNICOS: HIDROCARBONETOS - ALCANOS


PONTOS DE FUSÃO E EBULIÇÃO

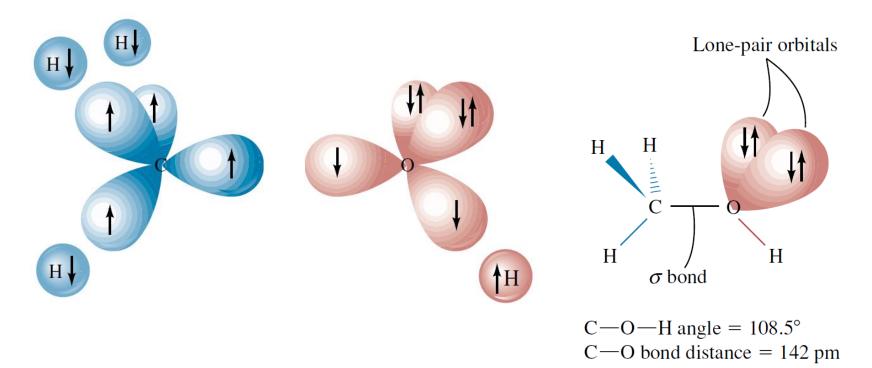
- Dentro do mesmo grupo funcional

- Peso molecular

5 interações a serem clivadas

8 interações a serem clivadas

Maior ponto de fusão e ebulição


Exercício

- Relacione os pontos de ebulição aos alcanos correspondentes: octano, 2-metil-heptano, 2,2,3,3tetrametil-butano, nonano.
- Pontos de ebulição 1 atm (°C): 106, 116, 126 e 151.

Compostos Orgânicos Oxigenados: Propriedades Físicas

Álcoois, Éteres, Epóxidos e
 Compostos Análogos de Enxofre

Estrutura de álcoois (OH)

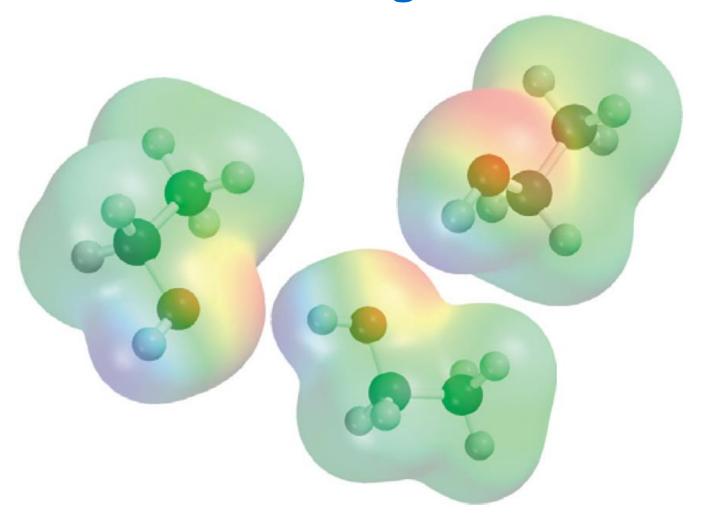
C-F (140 pm) C-Cl (179 pm) C-Br (197 pm) C-I (216 pm)

A ligação Carbono-oxigênio e carbono-halogênio são covalentes polares, sendo que o carbono apresenta uma carga parcial positiva no carbono em álcoois (C-O) e haletos de alquila (C-X).

Tipo de ligação

Momento dipolar

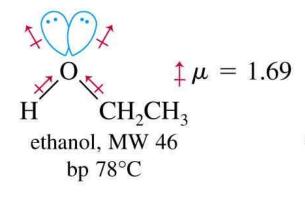
$$CH_3CH_2F$$


Propane (
$$\mu = 0 D$$
)
bp: $-42^{\circ}C$

Ethanol (
$$\mu = 1.7 D$$

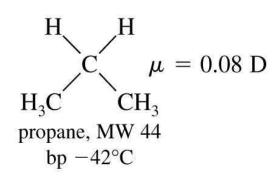
bp: $78^{\circ}C$

Ethanol (
$$\mu = 1.7 \text{ D}$$
) Fluoroethane ($\mu = 1.9 \text{ D}$)
bp: 78°C bp: -32°C


Que conclusões chegamos a respeito das ligações intermoleculares? Como explicar os p.e. observados no caso acima?

Interação Intermolecular – Ligações de hidrogênio

Propriedades Físicas


Ponto de ebulição (que interações são observadas?):

$$O_{\downarrow}$$
 $\uparrow \mu = 1.30 \text{ I}$
 H_3C CH_3

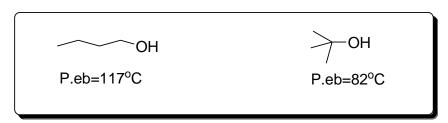
dimethyl ether, MW 46

 $bp - 25^{\circ}C$

Ligações de Hidrogênio

Dipolo-dipolo

Van de Walls

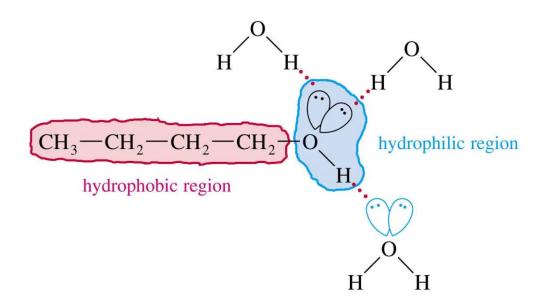

Propriedades Físicas

Pontos de ebulição (Mesmo grupo funcional)

Aumento do peso molecular (aumento de ~ 20 — 30 °C para cada metila adicionada)

Name of alkyl group	Formula	X = OH
Methyl Ethyl Propyl Pentyl Hexyl	CH_3X CH_3CH_2X $CH_3CH_2CH_2X$ $CH_3(CH_2)_3CH_2X$ $CH_3(CH_2)_4CH_2X$	65 78 97 138 157

Para isomeros de cadeia: depende da dificuldade em formar ligações de hidrogênio.



Solubilidade em água

TABLE 10-2 Water Solubility of Alcohols (at 25°C)

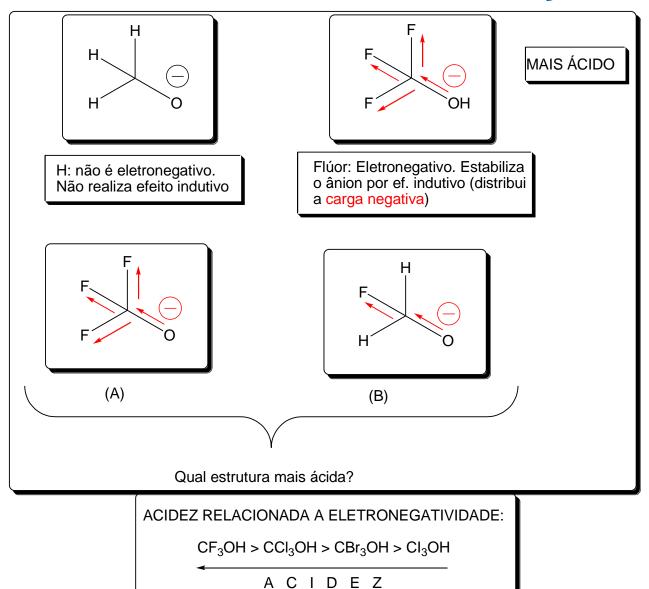
	Solubility
Alcohol	in Water
methyl	miscible
ethyl	miscible
n-propyl	miscible
t-butyl	miscible
isobutyl	10.0%
n-butyl	9.1%
n-pentyl	2.7%
cyclohexyl	3.6%
n-hexyl	0.6%
phenol	9.3%
hexane-1,6-diol	miscible

Como explicar a tabela ao lado?

Solubilidade diminui com o aumento da cadeia carbônica.

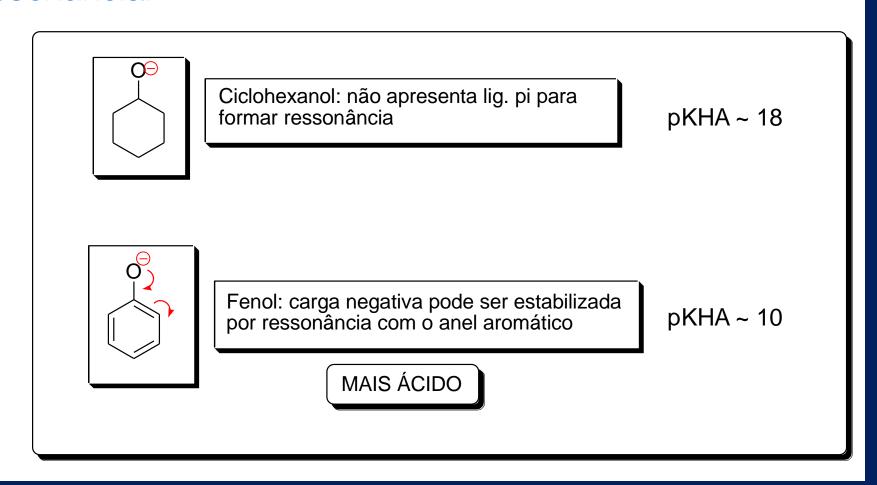
Acidez de álcoois

Formação de íons alcóxidos


Quanto mais estável for o ánion formado RO-, mais ácido é o álcool.

Acidez de álcoois: efeitos de estabilização

Efeito estérico:


Acidez de álcoois: efeitos de estabilização

Efeito indutivo:

Acidez de álcoois: efeitos de estabilização

Ressonância:

Acidez de álcoois

- Valores pK_a: 15.7-18.0 (água: 15.7)
- Acidez diminui com o aumento de grupos alquila (impedimento estérico).
- Halogênios aumentam a acidez.
- Fenol é 100 milhões de vezes mais ácido que ciclohexanol!

CH₃CH₂OCH₂CH₃

Ethoxyethane Diethyl ether

CH₃CH₂OCH₃

Methoxyethane Ethyl methyl ether CH₃CH₂OCH₂CH₂CH₂Cl

1-Chloro-3-ethoxypropane

3-Chloropropyl ethyl ether

Em preto: Nomenclatura IUPAC

1-ethoxy-3-fluoropropane

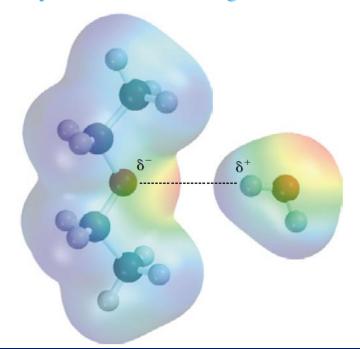
1-fluoro-3-isopropoxypropane

Propriedades Físicas - Éteres

Éteres possuem ponto de ebulição semelhantes aos dos alcanos do que álcoois. Porém, é observado o contrário com relação a solubilidade em água: éteres comportam-se mais como álcoois do que alcanos. Por que?

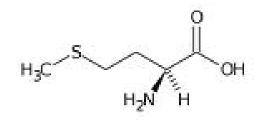
CH₃CH₂OCH₂CH₃

CH₃CH₂CH₂CH₃CH₃


CH₃CH₂CH₂CH₂OH

Boiling point: Solubility in water: 7.5 g/100 mL

Diethyl ether 35°C


Pentane 36°C Insoluble

1-Butanol 117°C 9 g/100 mL

Éteres não formam ligações de hidrogênio entre si.

Compostos de enxofre: Tióis e Sulfetos

Cistina (dissulfeto)

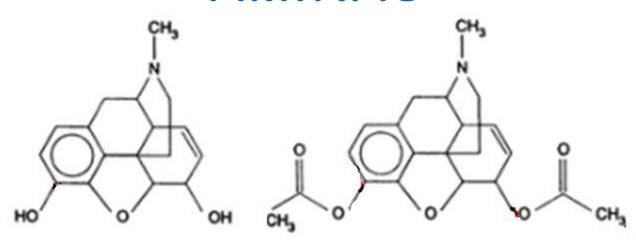
Cisteína (tiol) Metionina (sulfeto)

Nomenclatura

CH₃CH₂CH₂SH

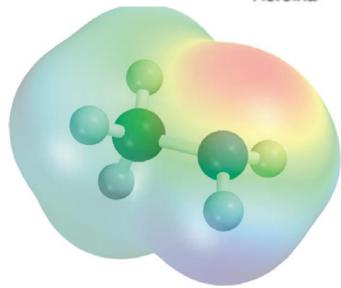
HSCH₂CH₂OH

3-metil-1-butanotiol

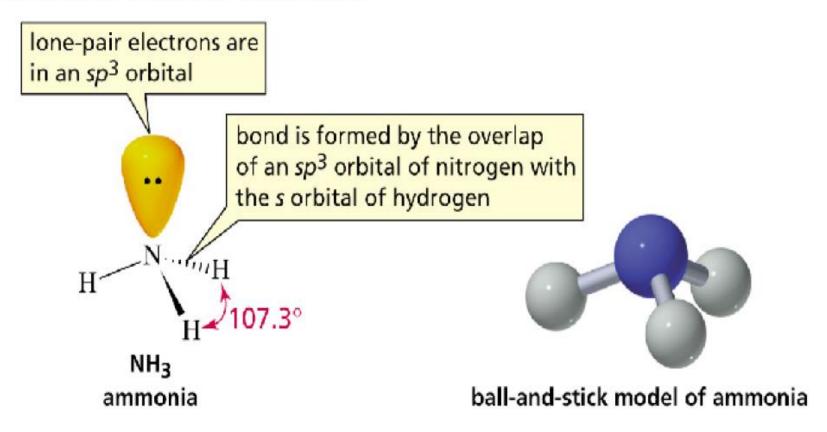

1-propanotiol

2-mercaptoetanol

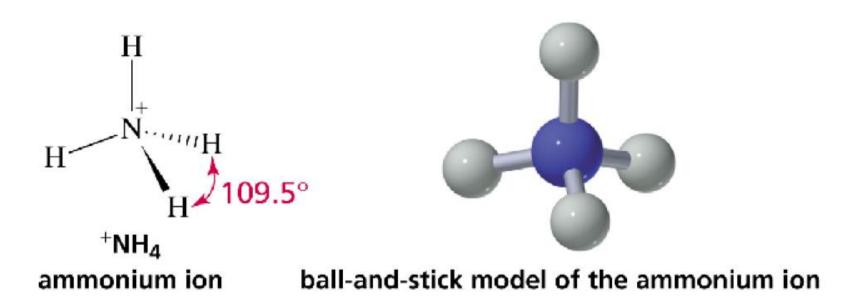
- Tióis são ácidos mais fortes (p K_a = 10) do que álcoois. Por que?
- Não fazem ligação de hidrogênio.


Compostos Orgânicos Nitrogenados: Propriedades Físicas

AMINAS

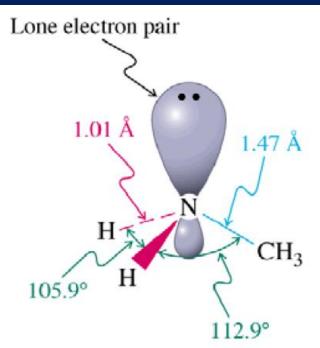

Morfina

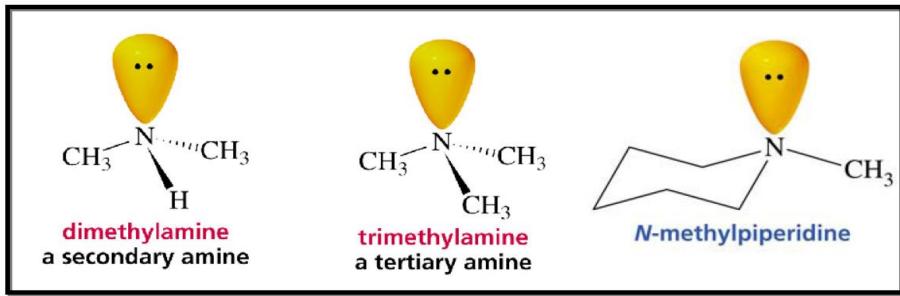
Heroína



Estrutura e Propriedades

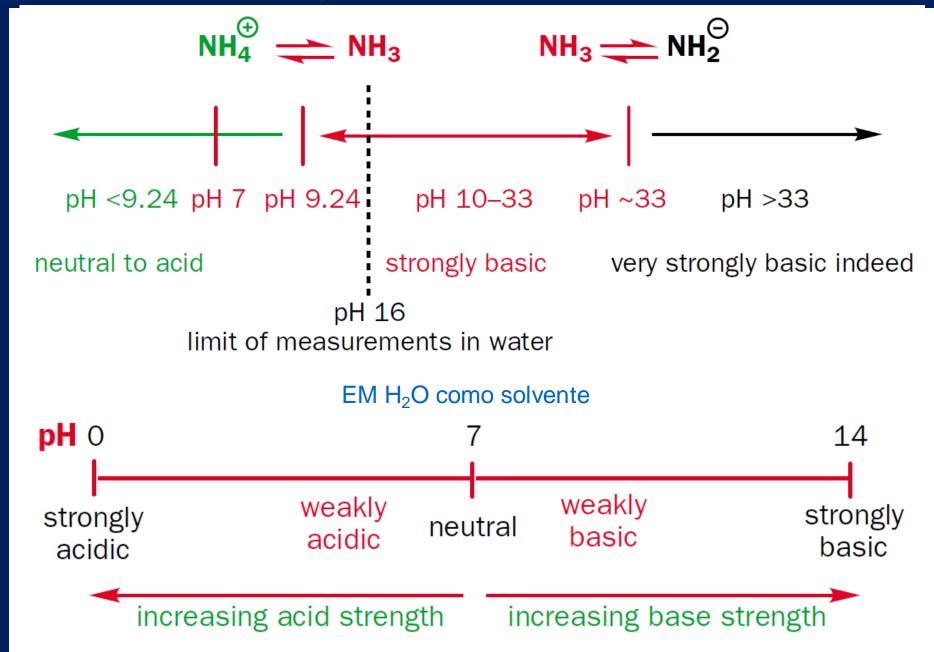
Recordando a estrutura da amônia:




Recordando a estrutura do íon amônio

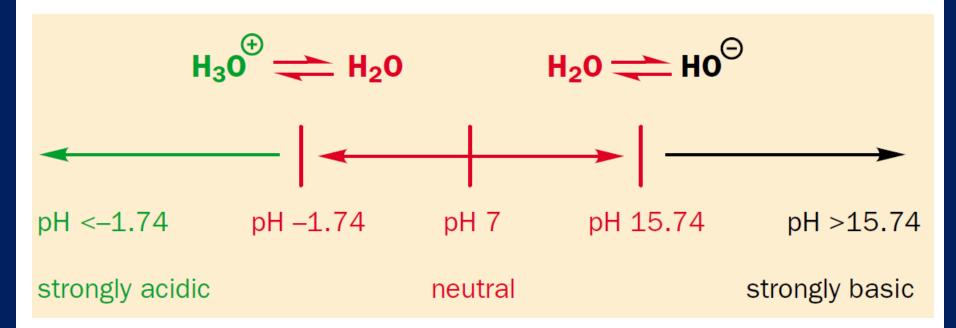
Estrutura da Metilamina:

Piramidal (ou tetraédrica, se o par de elétrons for considerado)

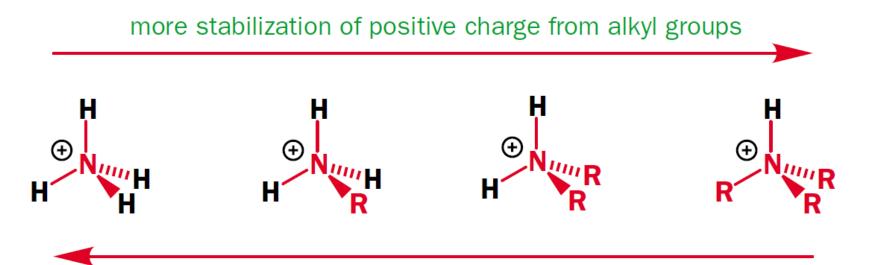

As aminas, de um modo geral, possuem odor desagradável. As de cadeia pequena possuem "odor de peixe"

O ponto de ebulição de aminas é maior do que o de éteres e de alcanos, mas é menor do que o dos álcoois. Exemplos:

Comparação entre ponto de ebulição:

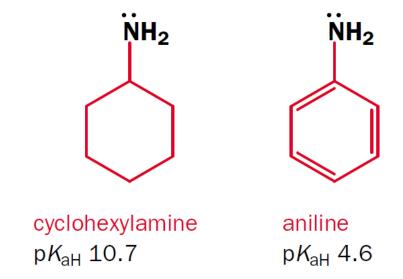

Alkanes	Ethers	Alcohols	Amines
CH ₃ CH ₂ CH ₃ - 42.1	CH ₃ OCH ₃ -23.7	CH ₃ CH ₂ OH 78	CH ₃ CH ₂ NH ₂ 16.6
CH ₃ CH ₂ CH ₂ CH ₃ -0.5	CH ₃ OCH ₂ CH ₃ 10.8	CH ₃ CH ₂ CH ₂ OH 97.4	CH ₃ CH ₂ CH ₂ NH ₂ 47.8
CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ 36.1	CH ₃ CH ₂ OCH ₂ CH ₂ 34.5	CH ₃ CH ₂ CH ₂ CH ₂ OF 117.3	CH ₃ CH ₂ CH ₂ CH ₂ NH ₂ 77.8

O que podemos concluir?


Recordando (pKas)

EM H₂O como soluto

		Acidity of conjugate acid		
Compound	Structure	K _a	p <i>K</i> _a	
Ammonia	NH ₃	5.5×10^{-10}	9.3	
Primary amines				
Methylamine Ethylamine Isopropylamine tert-Butylamine Aniline	CH_3NH_2 $CH_3CH_2NH_2$ $(CH_3)_2CHNH_2$ $(CH_3)_3CNH_2$ $C_6H_5NH_2$	2.3×10^{-11}	10.6 10.8 10.6 10.4 4.6	
Secondary amines				
Dimethylamine Diethylamine N-Methylaniline	(CH ₃) ₂ NH (CH ₃ CH ₂) ₂ NH C ₆ H ₅ NHCH ₃	7.7×10^{-12}	10.7 11.1 4.8	
Tertiary amines				
Trimethylamine Triethylamine N,N-Dimethylaniline	$(CH_3)_3N$ $(CH_3CH_2)_3N$ $C_6H_5N(CH_3)_2$	_	9.7 10.8 5.1	
*In water at 2E°C				


^{*}In water at 25°C.

more stabilization of positive charge from hydrogen bonding with solvent

Gas phase acidity

If we look at the p $K_{\rm aH}$ values in the gas phase, we can eliminate the hydrogen bonding contribution and we find the basicity increases in the order we expect, that is, tertiary > secondary > primary.

The low pKaH of aniline (PhNH₂), 4.6, is partly due to the nitrogen being attached to an sp² carbon but also because the lone pair can be delocalized into the benzene ring.

Acidez das Aminas

O pKa da amônia e alquílicos é da ordem de 35.

Recordando.....

relative acidities:
$$CH_4$$
 < NH_4 < H_2O < HF strongest acid

relative electronegativities: C < N < O < F
most
electronegative

relative stabilities:
$${}^-\mathrm{CH_3}$$
 < ${}^-\mathrm{NH_2}$ < ${}^+\mathrm{HO^-}$ < ${}^-\mathrm{F^-}$ most stable

BASICIDADE DAS AMINAS

As aminas podem ser protonadas em meio ácido:

$$CH_3\ddot{N}H_2 + H-Cl \longrightarrow CH_3-\ddot{N}H_3 Cl^- + H_2O$$

methylamine

methylammonium chloride

A basicidade das aminas será analisada em termos do pKa do seu ácido conjugado. Quanto maior o pKa do íon amônio, mais básica será a amina.

$$K_a$$

 $RNH_3^+ + H_2O \xrightarrow{K_a}$ $RNH_2 + H_3O^+$
 $K_a = [RNH_2] [H_3O]^+ / [RNH_3^+]$

$$Pk_a = - log K_a$$

Pk_a = PH no ponto de equivalncia

Exercícios - Completar as seguintes reações:

$$CH_3$$
 CI^{\ominus} CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

LDA: Di-*iso*propilamideto de lítio é uma base extremamente forte, porém é um nucleófilo fraco. É estericamente impedida...

É uma base bastante utilizada em química orgânica para desprotonar ácidos fracos, como, por exemplo, acetilenos e compostos carbonílicos.